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Abstract

We investigate stresses and particle motion during the start-up of flow in a colloidal dispersion
close to arrest into a glassy state. A combination of molecular dynamics simulation,
mode-coupling theory and confocal microscopy experiments is used to investigate the origins of
the widely observed stress overshoot and (previously not reported) super-diffusive motion in the
transient dynamics. A link between the macro-rheological stress versus strain curves and the
microscopic particle motion is established. Negative correlations in the transient auto-
correlation function of the potential stresses are found responsible for both phenomena, and
arise even for homogeneous flows and almost Gaussian particle displacements.

1. Introduction

Relaxation processes in highly viscous liquids are strongly
affected by the application of an external shear field. Even
at small shear rates, the shear viscosity can decrease by orders
of magnitude while the structure exhibits only small changes
compared to equilibrium. This phenomenon of shear thinning
has been observed in experiments of various systems, such as
colloids and polymers, as well as in computer simulations of
model systems [1].

The transport coefficients measured in quiescent equilib-
rium or linear response markedly differ from those in steady
shear states. This raises the question how the system’s micro-
scopic dynamics evolves in response to a sudden change in the
externally applied shear. This concerns the transient dynam-
ics such as, for example, displayed in time-dependent trans-
port coefficients or waiting-time-dependent two-time correla-
tion functions. Here, we are concerned with a suddenly com-
mencing shear flow, imposed upon a quiescent, equilibrated
system. While the measurement of macroscopic quantities like
the shear stress o is standard rheology procedure, the detailed
study of microscopic dynamics has been a recent contribution

0953-8984/08/404210+13$30.00

to the field from both computer simulation [2-9] and direct-
imaging techniques for colloidal suspensions, namely confocal
microscopy [10].

It is well known that, after starting a steady shear flow,
stresses develop in the liquid. At short times after switching on
(corresponding to small overall strains y = yt), they increase
almost linearly and at long times saturate at a constant level, the
stress corresponding to the sheared steady state. In many cases,
the increase in stress first continues beyond this steady-state
value before relaxing back at larger times. A nonmonotonic
o () versus ¢ curve results, with a maximum at intermediate
strains, the ‘stress overshoot’. Such overshoots have been
seen in polymeric liquids [11-13], metallic glasses [14, 15]
and in simulations [6, 16-19]. Despite its abundance among
different systems, no generally accepted physical picture has
emerged. Linking this macroscopically observed feature to
the underlying microscopic dynamics can be achieved by
studying the transient (microscopic) correlation functions. We
pursue this by combining confocal microscopy, molecular
dynamics simulation and a mode-coupling-theory approach.
Surprisingly, we find that a previously not reported, super-
diffusive particle motion is characteristic for the dynamics

© 2008 IOP Publishing Ltd  Printed in the UK
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at strain values where the stress overshoot appears. We
connect both phenomena to negative portions in the transient
autocorrelation function of the microscopic stresses.

The mode-coupling theory (MCT) for colloidal rheol-
ogy [20-24] is a recent microscopic framework from which
constitutive equations can be derived that capture the interplay
of slow dynamics and shear thinning. The theory can thus ad-
dress the above question on the relation between microscopic
dynamics and macroscopic rheology. Its underlying physical
picture is a combination of the cage effect, leading to slow
dynamics, and of the advection of long-wavelength fluctua-
tions to short wavelength, leading to a shear-induced break-
ing of cages [25-28]. The MCT equations can be formulated
from an integration-through-transient formalism developed by
Fuchs and Cates [20, 21]. In this formalism, transient corre-
lation functions of a special kind (equilibrium averages over
fluctuations that evolve according to the nonequilibrium dy-
namics) play a central role. The direct measurement of such
correlations, which is possible under shear start-up, provides
a direct link between theory, simulation and experiment. This
allows for a detailed test of some of the assumptions implicit
in the theory.

This paper is structured as follows. In section 2 we
will discuss the different techniques used in this study,
namely the simulation model, experimental set-up and
theoretical framework. Section 3 presents and compares
the main results for both stress buildup and waiting-time-
dependent mean-squared displacements after switching on
shear flow. Finally, section 4 concludes.

2. Methods and techniques

2.1. Simulation model and details of the simulation

Molecular dynamics computer simulations have been done for
a simple model of a binary AB mixture of charged colloids.
The interactions between the particles are modeled by a
Yukawa potential:

exp(_K(xﬂ (r — daﬂ))

Ugp = eaﬂdaﬂ , a, :8 =AB, (D
which is truncated at a cutoff distance r b , defined by
uaﬂ(ré’ b ) = 107 7€sa. The ‘particle diameters’ are set to
d = dapn = 1.0, dgg = 1.2d and dag = 1.1d, the energy

parameters to € = eap = 1.0, egg = 2.0€ and exp = 1.4€,
and the screening parameters to kaa = kpp = kap = 0/d.
The choice of these parameters ensures that, at the density
o = 0.675ma/d3, considered in this work, no problems
with crystallization or phase separation occur, at least in the
temperature range under consideration. The masses of the
particles are set to unity, i.e. m = ma = mg = 1.0.

The simulations were done for a 50:50 mixture of N =
2Na = 2N = 1600 particles, placed in a cubic simulation
box of linear size L = 13.3d. For the sheared system, we
chose the x direction as the direction of shear and the y and z
directions as the gradient and vorticity direction, respectively.
Shear was imposed onto the system via modified periodic

boundary conditions, the so-called Lees—Edwards boundary
conditions [29, 30]. Here, a particle that moves out of the
simulation box in the y direction is subject to a displacement in
the x direction due to constant velocities u; , and —us , of the
image cells above and below the simulation cell, respectively.
For the glassforming Yukawa system considered in this work,
the application of Lees—Edwards boundary conditions leads
to a linear shear profile in the steady-state regime, v ,(y) =
y(y — L/2), with the shear rate y = us,/L. In recent
simulation studies, Lees—Edwards boundary conditions have
been used in conjunction with the so-called Sllod equations
of motion [30] to enforce the formation of a linear shear
profile. For our purpose, the use of the Sllod equations is
not appropriate since we are mainly interested in the study
of the transient dynamics, i.e. in the time regime before the
steady-state regime is reached. In this case, one may expect
that the emergence of nonlinear shear profiles strongly affects
the response of the system to the external shear field. Thus,
the Sllod equations would modify the transient dynamics
in an artificial manner. However, as we shall see below,
an almost linear profile is built up long before the steady-
state regime is approached. So our simulations indicate a
posteriori that it does not matter whether or not the Sllod
equations are used. We also note that nonlinear shear profiles
may occur as a consequence of a hydrodynamic instability,
leading to the formation of shear bands. However, in the
glassforming Yukawa system of this work, such phenomena are
not observed, at least for the considered range of shear rates.
Both for the equilibrium simulations and the simulations
under shear, the system was coupled to a dissipative particle
dynamics (DPD) thermostat (see [31] and references therein).
The DPD equations of motion are given by
=2 = [ HR] @
i j G

with r; and p; the position and momenta of a particle i
(i = 1,...,N). Inequation (2) F;; = —Vu,;; denotes the
conservative force between a particle i and a particle j due to
the interaction potential defined by equation (1). To provide
the thermostatting of the system a dissipative force FB- and a
random force FS- are added in equation (2).

The dissipative force is defined by [32]

FD = —cw?(ryj) (i) - vij) &) 3)

with ¢ being a friction coefficient, v;; = v; — v; the relative
velocity between particle i and j, F;; the unit vector of the
vector r;; = r; — r; and r;; = |r; — r;| the distance
between particle i and j. The function w(r;;) is defined
by w(rij) = /1 —rij/re for ry; < r?PD = 1.25d and
w(r;j) = O otherwise. Thus, the force FP describes a
frictional force due to the interaction between neighboring
particle pairs. The use of the relative velocities between
neighboring particles in (3) is crucial to obtain the correct
behavior on hydrodynamic scales. It ensures that the DPD
thermostat is Galilean-invariant and that momentum is locally
conserved. For the friction coefficient ¢ we chose the value
¢ = 12. With this value, the microscopic properties are close
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to those of a purely Newtonian dynamics with ¢ = 0. The
microscopic dynamics can be significantly changed by using
high values of ¢, approaching the limit of an overdamped
stochastic dynamics where inertia effects can be effectively

neglected. In a forthcoming publication [33], we present
simulations with ¢ = 1200 and compare them to those
with ¢ = 12 that are shown in the present paper. These

simulations indicate that qualitatively all the essential features
of the transient dynamics do not depend on the choice of ¢.

The random force in (2) is given by F?j =
V2kgTCw(r;j)6;;t;; where 6;; = 6;; are uniform random
numbers with zero mean and unit variance. The amplitude of
the random force, +/2kgT ¢, is chosen in accordance with the
fluctuation—dissipation theorem.

The equations of motion were integrated by a generalized
form of the velocity Verlet algorithm that has been recently
proposed by Peters [34]. For the time step of the integration we
used 8¢ = 0.00837 (with the time unit T = /md?/e). First,
the samples were fully equilibrated in the temperature range
1.0 > T > 0.14, performing at least 30 independent runs
at each temperature. Starting from fully equilibrated samples,
production runs at various shear rates were performed. These
runs were sufficiently long to reach the steady-state regime.

At the lowest temperature 7 = 0.14, 250 independent
runs were done, each of them over 40 million time steps.
This relatively large effort was necessary for an accurate
determination of the shear stress, defined by

1
(oxy) = B <Z |:mi (Vix = Vs (M) viy + Zrij,xFij,yj|>~

i j>i

“
The shear stress (o) is a collective quantity and thus lacks the
self-averaging property of one-particle quantities. Therefore, a
relatively large number of independent runs have to be made
to obtain (oy,) with a reasonable accuracy. Below we also
present simulation results for the mean-squared displacement
(MSD) of a tagged particle:

(r2(1)) = ((Fug.a (1) = Faga(0))?),

where g o (¢) is the « component of the position of the tagged
particle at time ¢ (an average is performed over all particles of
the same species). The MSD is an example of a one-particle
quantity. From the MSD, the self-diffusion constant D can be
calculated via the Einstein relation:
2
D= tim 02, ©6)
t—oc0 2t
Note that, for the sheared system, the MSD as well as the
self-diffusion constants are anisotropic and depend on the
considered Cartesian direction (see below).
Another quantity that we use to characterize the difference
between sheared and unsheared systems is the so-called non-
Gaussian parameter [35, 36]:

1(r* (1))
3(r3(1)?
or(t) is the coefficient of the first correction term to
the Gaussian approximation of the incoherent intermediate
scattering function. Note that o, (¢) vanishes in the diffusive
long-time limit when the Einstein relation (6) holds.

a=x,y,z, (5

o (t) = (N

2.2. Experimental techniques

2.2.1. Samples. We used polymethylmethacrylate (PMMA)
colloids fluorescently labeled with nitrobenzoxadiazole (NBD)
and dispersed in a mixture of cycloheptyl bromide and
cis-decalin that closely matches the density and refractive
index of the colloids. Since the colloids acquire a
small charge in this solvent mixture, we added 4 mM
of tetrabutylammoniumchloride in order to screen the
charges [37]. Such a system shows nearly hard-sphere (HS)
behavior, where the volume fraction ¢ = (17/6)nd? is the only
thermodynamic control parameter.

The particle diameter d = 1680 &= 4 nm was determined
by static light scattering on a very dilute colloidal suspension
(¢ ~ 107*). The diameter was also independently estimated
from the position of the first peak of the radial distribution
function obtained by confocal microscopy [38, 39], yielding
d = 1690 nm. With the very dilute sample we also performed
dynamic light scattering. This confirmed the determined
particle diameter and, in addition, allowed us to deduce
the relative polydispersity in size, 0.062, from the angular
dependence of the diffusion coefficient [40].

The colloid volume fraction of the stock solution was
calibrated by drying. A drop of the suspension was weighed
and allowed to dry in a vacuum oven until all the solvent
was evaporated. The weight fraction was then calculated as
Qv = Myry/Miora1, Where mgyy is the mass of the dried sample
and My, 1S the original mass before drying. The colloid
volume fraction was estimated from the weight fraction as ¢ =
a¢y, where the factor o takes into account the contribution
of the PHSA hairs, which are collapsed in the dried state.
Following [41] we assume o = 1.04. Our sample was prepared
at ¢ = 0.57. The volume fraction of the sample was also
determined by direct imaging and found to be consistent.

2.2.2. Shear cell. Shear was applied to the sample by means
of a shear cell designed and built in our lab. It represents an
improved version of cells previously used in light scattering
and microscopy experiments [42—44].  For the present
microscopy experiments, a specially designed microscope
stage is used to mount the shear cell in the microscope. The cell
consists of two parallel glass coverslips (thickness 170 wm)
whose separation can be continuously varied within the range
300...1000 um by vertically shifting the upper plate, which
is sitting on three metal spheres. Adjusting the position of the
metal spheres also ensures that the two plates are parallel; this
is verified as described before [45]. In the present experiment
we used a gap width (320 um) close to the minimum value
in order to achieve maximum strain. The bottom plate of
the cell is driven by a piezoelectric actuator (PI Instruments,
model P-841.60) which can provide a maximum stroke of
90 pum. The other end of the bottom plate is connected
to a pivoted lever driving the upper plate in the direction
opposite to the bottom plate [42]. The vertical position of
the pivot moves the vertical position of the stationary plane
inside the sample and changes the maximum displacement of
the top plate. In this experiment the maximum displacement
of the top plate was 630 um, as measured by a displacement
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Figure 1. Confocal microscopy image of the sample at switch-on of
shear. The axes x and z indicate, respectively, the velocity and
vorticity direction. The gradient direction is perpendicular to the
plane of the image.

sensor (Lion Precision, model ECL100-USA, displacement
range 2 mm) which was calibrated prior to the measurement
using the piezoelectric actuator displacement, which is known
with nanometer accuracy. With this arrangement the maximum
obtainable strain is y = 2.25.

A constant shear rate is achieved by driving the
piezoactuator with a linear voltage ramp which covers the
whole displacement range. The slope of the ramp determines
the shear rate y. The shear rate is also experimentally
measured from the velocity profile across the gap, as explained
below.

In order to minimize solvent evaporation during the
experiments, the two glass plates are surrounded by teflon
sheets which touch each other and thus seal the sample
environment. Due to the very low friction of teflon, no change
in the plate displacement due to the contact of the teflon sheets
is observed, as verified during calibration.

In recent investigations of the flow of glassy colloidal
dispersions wall slip was observed when smooth surfaces
were used to apply shear to the samples. It was shown [10]
that slip can be prevented when the surfaces are coated with
colloidal particles similar to those used for sample preparation.
Although our volume fraction is below the glass transition, we
coated the coverslips with a layer of polydisperse colloids. The
velocity profile across the gap indeed shows no indication of
wall slip (see below).

2.2.3. Confocal microscopy and image analysis. ~Confocal
microscopy experiments were performed with a fast-scanning
VT-Eye confocal microscope (Visitech International) mounted
on a Nikon TE2000-U inverted microscope. A Nikon Plan
Apo VC 100x oil immersion objective was used for all
measurements. Two-dimensional images of the samples were
recorded at a depth of 15 um inside the sample (except for
the determination of the velocity profile, see below), in order
to avoid boundary effects and to retain good quality images.

2|

number of particles

'IO £t . =, 1 . 1 PRSI T M. .|

0.0 0.5 1.0
displacement [um]

Figure 2. Histogram of particle displacements between consecutive
images along the velocity x (o) and vorticity z (l) direction.

Images have 512 x 512 pixels, corresponding to an area of
57 x 57 um?.

In a typical experiment 500 images were recorded starting
simultaneously with the application of shear and ending when
the maximum strain was reached. Image acquisition and
application of shear were synchronized by starting the voltage
ramp, which controls the displacement of the plates, with a
trigger provided by the confocal microscope. The response of
the piezoactuator to the voltage (microsecond delay) can be
considered instantaneous on the timescale of our experiments.

Figure 1 shows a typical confocal image acquired in
experiments. The axes x and z indicate the velocity and
vorticity direction. The gradient direction, y, is perpendicular
to the plane of the image. Particle coordinates and
particle trajectories were extracted from images using standard
routines [46]. The shear rate applied here (y = 0.045 s™!)
is sufficiently small so that particles do not move very far
between two consecutive frames even in the x direction. It
is thus not necessary to remove the affine motions before
tracking [47]. This is supported by the histograms of the frame
by frame displacements in the x and z directions as determined
during a step rate experiment (figure 2); both histograms lie
well within the displacement axis, which covers the maximum
detectable range (about =1 pum).

Particle trajectories were used to calculate mean-squared
displacements (MSD) and non-Gaussian parameters («z) in
the vorticity direction z, according to equations (5) and (7),
respectively. Only trajectories starting at the commencement
of shear are included in the MSD and a5 calculations in order
not to lose information on the time dependence of the MSD and
ay after switching on the shear field. This implies that in each
experiment only a limited number of particles are contributing
to the average value of the two quantities; initially of the order
of 1000 and the number decreasing with time as particles leave
the field of view due to motion in or out of the observation
plane. In order to improve statistics, MSDs and «, extracted
from several, typically 20, experiments were averaged after
checking reproducibility.

The velocity profile across the gap was determined
immediately after the application of shear by recording
image series at different depths into the sample. The depth
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was increased in steps of 10 pum, from the first layer of
particles above the coating up to 100 um into the sample.
Deeper in the sample, image quality did not allow for a
quantitative analysis. Displacements between consecutive
images were determined by maximizing the correlation
between consecutive images [47]. The obtained velocity
profile (figure 9) shows a linear dependence with a shear rate
y = 0.0458 s7!, in good agreement with the nominal value
(for a detailed discussion see below).

2.3. Mode-coupling theory for glassforming liquids
under shear

Recent advances [20, 21, 23, 24] have generalized the mode-
coupling theory of the glass transition to describe dense
colloidal suspensions in a flowing solvent, characterized by
a non-vanishing velocity gradient tensor of arbitrary time
dependence k(). The resulting nonlinear theory provides a
route to calculating nonequilibrium averages of functions of
the particle coordinates. In particular, a closed microscopic
expression for the shear stress in terms of the full flow history
of the system, i.e. a constitutive equation relating stress and
strain, may be obtained. The starting point of the theory is the
many-body Smoluchowski equation [48]:

() = QOWN) = Y 8,-[Do@d — BF) — (1), 1% (D),
l ®)

where Dy is the bare diffusion coefficient and g =
1/kgT. Equation (8) describes the evolution of the
probability distribution function of particle positions W(¢)
in the overdamped limit. This formulation of the theory
omits hydrodynamic interactions and assumes a prescribed,
spatially constant k (), thus excluding confinement effects
and inhomogeneous flows such as shear-banded and shear-
localized states. Although the assumption of translationally
invariant flow is clearly an idealization, the simulation and
experimental results presented in this work suggest that
equation (8) is a reasonable starting point, at least for dense
fluid states under shear flow. In the case of a constant shear
flow y along the x direction and with gradient in the y direction
the velocity gradient tensor is given by x;; = ¥ ;8.

The integration through transients formalism [20, 21, 23,
24] provides a formal solution to equation (8) by integrating
over the entire flow history. In the case of shear, the following
formal result is obtained for the time-dependent distribution
function:

t

o
wm=%+/dWM%%Jm®, ©)

—00
where 6., = —), Fi.rj, is the potential part of the

microscopic stress tensor and Q7 is the adjoint Smoluchowski
operator. The time-ordered exponential function e_ arises
because 27(7) does not commute with itself for different times.
The assumption of an equilibrium Boltzmann distribution W,
in the infinite past allows general nonequilibrium averages to
be expressed in terms of averages taken with the equilibrium
distribution function. Equation (9) is an operator expression,
to be used with the understanding that quantities to be

averaged are placed to the right before integration over
particle coordinates. Within linear response the macroscopic
shear stress o (¢) is given in terms of the shear modulus by
the familiar Green—Kubo formula of equilibrium statistical
mechanics. Using (9) to calculate the average of the potential
part of the macroscopic stress, namely 6,/ V, where V is the
system volume, yields a nonlinear generalized Green—Kubo
relation [20, 21, 23, 24]:

o [ dsQF(s) &

1 t
O’x);(l) = _/ J}(t/)<6'xy —

v/ (10)

xy)s
where (-) represents an average over the equilibrium
distribution. Note that the flow history y (z') appears both
explicitly in equation (10) (recovering linear response) and
implicitly (nonlinearly) through the time evolution of the
stress—stress correlation function. In the present situation
of start-up shear, y(¢') vanishes for all ¥ < 0, so that
the integration is only performed for ¢t > 0, where the
Smoluchowski operator has no explicit time dependence.
Defining the generalized dynamical shear modulus by G(¢) =
(64 (1)64y(0))/ V as a nonlinear function of y, we have

t

Oy (t) = )}/0 dr'G(r'). (11)
Within the mode-coupling approach G(t) is approximated by
projecting the dynamics onto density-pair modes correspond-
ing to all possible wavevector pairs and directions. The con-
siderable numerical complexity of the resulting equation can
be significantly reduced by employing the following isotropic
approximation for the modulus [22]:

G(t) = ks T /dk
© 6072

where S; is the static structure factor. The affine solvent
flow enters via the time-dependent wavevector k(¢) describing
the advection of density fluctuations for wavenumber k to
smaller wavelengths. The exact anisotropic advection k(¢) =
Vk? + 2kckyyt + k2y21% needs to be approximated by an
isotropic wavevector in the mode-coupling k integrals, k(t) ~
k/1+ (yt/y:)?/3, in order to reduce the computational
resources required. Pre-averaging over spatial directions
introduces an additional source of error when compared to
the full solution of the anisotropic MCT equations. To first
order, we expect this discrepancy can be compensated by
introducing a characteristic strain parameter, y., to which we
assign the value y, = 0.1. Evaluation of (12) requires the
transient intermediate density correlator, defined by () =
(of exp[QTt]Qk(,,))/NSk. The appearance of an advected
wavevector in this definition removes the trivial decorrelation
of density fluctuations arising from purely affine flow. As
a consequence of the equilibrium averaging, () only
contains information regarding the strain accumulated between
t = 0 and later time . Mori—Zwanzig type projection
operator manipulations yield an equation of motion for the
correlator [22]:

K SiSi ©?

wos "

(1) (t),

a ! ! ! a !
ECD(I) +Ty (cbq(t) +/O dt'mg (¢ —t)ﬁcb,,(t )> =0,
(13)



J. Phys.: Condens. Matter 20 (2008) 404210

J Zausch et al

where I, = quO/Sq is the initial decay rate. Mode-
coupling approximations provide an explicit form for the
memory function:

nS,ScS,
my (1) = dkm[q -Keva) + 4 - pepn]

x [q-Kkex +q - pc,l, (14)

where 7 is the number density and ¢, is the equilibrium direct
correlation function, nc; = 1 — 1/§,. It should be noted that
the colloid—colloid interaction potential and thermodynamic
statepoint enter purely via the equilibrium structure factor. In
the absence of flow the two vertices in (12) or (14) form a
perfect square. For finite shear rates wavevector advection
leads to a de-phasing of the vertices, resulting in a reduction
of memory effects. This is the mechanism by which the
competition between slow structural relaxation and flow enter
the theory. Equations (12)-(14) form a closed theory for the
calculation of G(¢). The corresponding shear stress follows
from (11).

For the purposes of this study we consider a one-
component system of hard spheres of diameter d, and all
numerical calculations will be performed using the Percus—
Yevick approximation for S, ; discretization of the integrals is
performed as in [22, 49]. This minimal model provides both
a reasonable first approximation to the PMMA colloids used
in our experiments and captures the fundamental excluded-
volume effects responsible for the phenomenology observed in
our binary mixture simulations. The relevant parameters in the
hard-sphere system are the bare Péclet number Pey = yd?/ D,
measuring the importance of shear relative to Brownian
motion, and the packing fraction ¢ which determines the
timescale of structural relaxation in equilibrium. The effect
of shear on the structural relaxation is measured by the dressed
Péclet or Weissenberg number Pe, which we define by Pe =
)}dz /(2D), using D, the long-time self-diffusion coefficient in
equilibrium. It compares the shear rate with the time required
for a particle to diffuse a distance of its diameter in one spatial
direction.

3. Results

Figure 3 shows the diffusion coefficients D(y, T') obtained
from the simulations of the binary Yukawa mixture at various
temperatures and shear rates. Only the diffusivity of the larger
particles is shown, as the smaller particles behave qualitatively
identically. Open circles represent values measured in the
quiescent equilibrium state, D(y = 0,7). They show a
strong faster-than-Arrhenius slowing down with decreasing
temperature, signifying that the system approaches a glass
transition. On the timescale of the simulation, no diffusive
regime is reached in the MSD for temperatures lower than
T =0.14.

Applying steady shear to the system, one finds instead
that, even at the lowest temperatures considered here, the
system shows a finite diffusivity. For a fixed value of y, the
D(y, T) curves approach a plateau as 7 is lowered. This
plateau occurs at values increasingly larger than the quiescent
diffusion coefficient. Such an effect is a manifestation that the
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Figure 3. Self-diffusion constants for the B particles in equilibrium
and at the indicated shear rates, as obtained from the simulation. For
the sheared systems the diffusion coefficients are calculated from the
mean-squared displacement in x and y directions, i.e. perpendicular
to the shear direction. The temperature 7 = (.14 is marked.

(This figure is in colour only in the electronic version)

system shows shear-thinning behavior. At high temperatures,
a finite y has only a small effect on the diffusion coefficient,
and consequently all curves shown in the figure approach each
other for small 1/7.

To study the effects of switching on shear flow suddenly,
we consider a fixed temperature 7 = 0.14, corresponding
to the lowest temperature where we could equilibrate the
quiescent system. This allows us to start from a well-defined
reference state at 1 = 0, and enables direct comparison with
the theory. It also precludes aging effects arising from the
unsheared state.

The macroscopic stress o (t) measured from the time
of switching on steady shear is shown in figure 4 for three
different shear rates. The kinetic contribution is negligible
compared to the potential one, the one studied in the theory. All
three curves are qualitatively similar and show three regimes.
At early times, corresponding to small strains y = yr < 0.1,
o (y) increases almost linearly with y. This is the regime of
solid-like elastic response, and from the prefactor of this almost
linear increase one can infer the elastic constant. It depends
weakly on y. At large strains, y 2 1, one finds, on the
other hand, that o (¢) approaches an asymptotic value attained
in steady state, the dynamic shear stress o (00) resulting from
keeping the system flowing at a fixed rate. This corresponds
to the regime of plastic deformation. The long-time plateau
increases with increasing y, indicating that faster flow induces
higher internal stresses. The dependence of o (c0) on shear rate
is called the ‘flow curve’.

At strains in the intermediate range, 0.1 < y < 1,
a marked overshoot is seen in o(y): the almost linear
increase for small strains continues beyond the steady-state
value of o, so that a maximum o,y > 0(00) results
at roughly 10% strain in units of the particle diameters,
slightly increasing with increasing shear rate. Only after this
maximum does o (y) decay towards its steady-state value.
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Figure 4. Stress—strain relation from the simulation at the
temperature 7 = (.14 for three different shear rates, as indicated.

Similar features have been observed in experiment [11-13] and
simulation [6, 16, 18, 19].

Since the simulation introduces shear flow only through
the boundary conditions, the sudden switching on of shear does
not induce a linear flow profile instantaneously throughout
the simulation box. Rather, there exists some timescale over
which the steady-state velocity profile builds up. Especially
since we intend to compare the simulation results with MCT,
where a fixed velocity profile is presumed to exist always,
let us point out that none of the prominent features shown in
figure 4 depend on this gradual self-adjustment of the profile.
To this end, we determined the instantaneous velocity profiles,
ie. v (y), for the y = 3 x 1073 simulation at various
times following shear start-up. They have been obtained by
averaging over a negligibly small time window and over the
250 independent simulation runs. As figure 5 shows, the
profile for ¢+ = 0.6 indeed still shows a pronounced ‘S’-shaped
form, as the Lees—Edwards boundary conditions essentially
introduce small sheared boundary zones to the unperturbed
bulk. The propagation of these shear zones inwards is,
however, fast. Already around r = 8.1, corresponding
to a strain of ¥y & 0.02, one essentially recovers a linear
velocity profile across the whole system within the error bars.
This observation also holds for larger times (not shown).
For comparison, the profile obtained in the steady-state part
of the simulation (averaged over a longer-time interval and
hence displaying smaller fluctuations) is also shown in the
figure. We do not find the formation of shear bands or similar
localized features in the flow profile, even though the simulated
equations of motion do not bias towards a linear profile by
construction.

Comparing the strain at which the steady-state flow profile
is first attained with the typical strains identified from the
overshoot features in figure 4, we conclude that the latter are
not connected to the peculiarities of whether the system is
sheared only at the boundaries or forced to follow a linear
profile mediated through the solvent immediately. This makes
comparisons to MCT viable.

|
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Figure 5. Evolution of the shear profile from equilibrium to steady
state, as obtained from the simulation of the binary Yukawa mixture.
Between equilibrium and the steady state, profiles are shown at the
times r = 0.6, ¢ = 2.3 and r = 8.1. The applied shear rate is

¥ =3 x 1073, The temperature is 7 = 0.14. The inset shows the
stress as a function of time for y = 3 x 1073, The symbols in the
inset indicate the times along the stress curve at which the shear
profiles are shown.

More information on the transient dynamics of the system
can be obtained from two-time correlation functions, formed
between two times t, > 0 and f > fy. As a simple example,
we show in figure 6 the mean-squared displacements (MSD)
of B particles, for three different waiting times, t, = 0,
ty = 28.1 and t, sufficiently large so that the result as a
function of t — #,, becomes ¢, independent. For comparison,
the equilibrium MSD is also shown. It agrees with the MSDs
under shear for short times. Note that the solid lines correspond
to the MSD evaluated in the gradient direction, while the dotted
equilibrium and steady-state lines represent averages over both
directions perpendicular to shear. Comparing steady state
and equilibrium, we recover for long times the shear-thinning
effect discussed in connection with the diffusion coefficients,
figure 3. The equilibrium curve shows a pronounced plateau
where (r*(t, 1)) ~ 0.013 = r7,,, indicating that particles are
caged at intermediate times, with a localization length around
T rglm/6 A~ 0.02. This is the usual glassy dynamics
described by MCT in quiescent systems. The steady-state
curve does not show such a pronounced plateau, due to the
speed-up of the final relaxation.

As figure 6 shows, the sudden start-up of shear flow has a
drastic effect on the MSD measured immediately at the start-up
time. While the curve follows the quiescent MSD for strains
y < 0.1, for larger time it suddenly starts to increase much
more rapidly, and coincides with the steady-state MSD already
for y &~ 1, although D(y) > D(y = 0). This effect is seen
in both directions perpendicular to the flow, albeit somewhat
less pronounced in the vorticity direction, as demonstrated
by the solid lines in figure 6. There is thus an intermediate
time window where the MSD shows super-diffusive behavior,
ie. grows faster than f. This is even more clearly seen
when plotting (r2(t, t,))/(t — ty), as shown in the inset of
figure 6. At long times, this curve would monotonically fall
to 2D in the quiescent system. A dip followed by an increase
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Figure 6. (a) Log—log plot of the mean-squared displacements of B
particles at the temperature 7 = 0.14 as a function of strain y = yr.
Dashed and dotted lines correspond to equilibrium and steady state
rescaled with = 3 x 1073, The solid and dashed lines show the
transition from equilibrium to steady state at this y for the vorticity
direction (z, ‘vd’) and the gradient direction (y, ‘gd’), respectively.
Data for the waiting times #,, = 0 and 28.1 are shown (from right to
left). The dotted lines correspond to the mean-squared displacements
in the equilibrium (EQ) and in the steady state (SS), as indicated. In
the inset, (r2(t, ty))/(t — t,,) is plotted as a function of strain.

(b) Effective exponent . (¢) = d[log(r*(t, t,))1/d[log(t — t,,)] for
some of the curves shown in (a).

at intermediate times, as seen in our data, is the signature of
superdiffusion.

The effect can be quantified more precisely through a
logarithmic derivative, u(t) = d[log(rz(t, tw))1/d[log(t —ty)],
which approaches u = 1 for ordinary diffusion and © = 2 for
ballistic motion. The simulation result for p(¢) and t, = 0 is
shown both for the vorticity direction and the gradient direction
in the lower panel of figure 6. At short times, u(t — 0) — 2
reveals the ballistic motion underlying the molecular dynamics
simulation. Atz &~ 1, u(¢) & 0 is indicative of the equilibrium
cage effect. In the #, = O curve, it is truncated at yr ~ 0.1
and quickly w(¢) increases to about 2 in the gradient direction,
and 1.8 in the vorticity direction, before finally settling at
u(t — o00) — 1 as expected. The simulation thus reveals
an almost ‘ballistic’ regime in the MSD at intermediate times.
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Figure 7. Non-Gaussian parameter o, (¢) for equilibrium, steady
state and waiting time #,, = 0 at the temperature 7 = (.14. For the
sheared case, the shear rate is ¥ = 3 x 1073, For comparison also the
equilibrium o, (¢) at T = 0.18 is shown. D(y = 0) at this
temperature is approximately equal to D(y = 3 x 1073) at

T = 0.14. The bold solid line is a fit to the 7, = 0 curve with the
indicated power law o> o< 7%, The inset shows experimental
results for o, (¢). Here, the shear rate is y = 4.5 x 1072571,

Remarkably, this result remains unchanged if one performs
the simulation with a much larger damping coefficient in the
DPD thermostat, & = 1200 [33]. This highlights that the
regime of superdiffusion is likely a feature of sheared glassy
dynamics and not of the short-time microscopic motion. It
is worth noting that & < 1 holds for all times beyond the
microscopic transient in the steady-state curve. This is what
one expects from the regime of true ‘structural relaxation’,
and what holds precisely in the Brownian equilibrium system,
where all correlation functions are purely relaxing functions.

Figure 7 displays the non-Gaussian parameter o;(f), as
defined by equation (7), for equilibrium, steady state and
waiting time £, = O at T = 0.14and y = 3 x 1073, Also
shown is the equilibrium a,(¢) at T = 0.18 where D(y = 0)
is approximately equal to D(y =3 x 1073) at T = 0.14. In
the steady state the amplitude of the maximum in o, (¢) is about
an order of magnitude smaller than that for the equilibrium at
T = 0.14 and also slightly smaller than that of the equilibrium
curve at T = 0.18. Thus the application of shear seems to
reduce non-Gaussian effects at intermediate times. Similar
to the behavior of the MSD, the non-Gaussian parameter for
waiting time #, = 0 follows first the equilibrium curve. Then,
at time ¢ 2 30 the decay of «, can be fitted to a power law,
ap o170,

Let us now compare in detail the findings from the
simulation to the colloidal experiment. Figure 8 shows
the mean-squared displacements obtained from confocal
microscopy and particle tracking, taken in the vorticity
direction. Here only a single shear rate is shown. Note,
in comparing with figure 6, that the relevant quantities
characterizing the magnitude of shear differ between the two
set-ups: while the experiment corresponds to a Weissenberg
number Pe ~ 7 (Pey =~ 1), it is closer to Pe ~ 288
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Figure 8. Log—log plot of the experimental mean-squared
displacement in the vorticity direction as a function of strain y ¢ for
different waiting times, as indicated. The inset shows

(r’(t, ty,))/(t — t) as a function of y¢.

in the simulated system. Apart from obvious differences
due to this circumstance, the results are qualitatively similar.
As the inset of figure 8 demonstrates for the experimental
(r2(t, ta)) /) (t — ty), again a nonmonotonic dip is found at
roughly y =~ 0.1, identifying a corresponding super-diffusive
regime in the MSD. Like in the simulation, this effect is most
pronounced for #,, = 0 and then continuously weakens as the
steady state is approached.

A quantitative difference is found when comparing the
extension and strength of the super-diffusive window in the
MSD. In the simulation, the crossover in the ¢, = 0 curve
from the equilibrium to the steady-state limiting cases is much
more rapid. Likewise, the experiments show the first increase
of the transient MSD beyond the equilibrium curve for slightly
smaller strains, y =~ 0.05, than the y =~ 0.1 found in the
simulation.

Also the non-Gaussian parameters have been determined
in the experiment. They are shown in the inset of figure 7. One
can infer that this quantity also behaves qualitatively as in the
simulation.

Again it is important to stress that the effects discussed
here are not consequences of shear localization or, more
generally, developments of nonlinear flow profiles. This
has also been checked for the experiment. The velocity
profile in steady state is almost perfectly linear, as figure 9
demonstrates. This confirms that also in the experimental set-
up, a homogeneous constant shear steady state is approached,
without obvious shear localization features or wall effects.

Having established the close connection between simula-
tion and experiment, let us now try to rationalize these find-
ings with MCT. The quantity o () is easily accessed in the
mode-coupling framework and thus forms a convenient start-
ing point for the analysis. In order to provide a meaningful
comparison with simulation results, we have to first map the
relevant quantities between the theoretical hard-sphere model
and the binary Yukawa mixture employed in the simulations.
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Figure 9. Steady-state shear profile, as obtained from the experiment
(dots). Dashed line: linear fit providing y = 0.045 s~
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Figure 10. Comparison of the stress from simulation (dots) and
theory (solid lines) for the shear rates considered in simulation,

y =3 x 1073 (green),y = 6 x 10~* (red)and y = 3 x 107*
(black). The relation between simulation energy units (Ey,q) and
theory is E\ng = 8.8kgT. The theoretical shear rates (in units of

d?/ Dy) obtained from fitting the MSD at the highest shear rates of
the simulation (corresponding to a theoretical value Pe = 183) are
y=55x1073,y =1.1x 102 and y = 5.5 x 107, respectively.

Since we are dealing with slow structural dynamics, it is nat-
ural to fix the final relaxation time t first for equilibrium and
then to consider the effect of shear identifying the Péclet and
Weissenberg numbers. The only free parameter in the quies-
cent hard-sphere model is the packing fraction, adjusted in the
following to A¢p = ¢ — ¢. = —1.16 x 107> from the re-
quirement that MCT describes the equilibrium MSD found in
the simulation for long times (see below). Next, the shear rate
appropriate for use in the theory may be determined. We find
Pe = 183 (corresponding to y = 5.5 x 1073 Dy/d?) to lead to
the same D(y)/D(y = 0) as it arises from the simulation at
Pe ~ 288.

In figure 10, we show the resulting MCT-calculated stress
o(t) as a function of accumulated strain yt for the three
shear rates considered in the simulation. Theoretical results
are shown in hard-sphere units (kg T/d3) whereas simulation
results are expressed in units of Eng = 6/d3. The two axes
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Figure 11. Generalized shear modulus from mode-coupling theory,
calculated using ¢ — ¢ = —1.16 x 1073, for y = 0 (rightmost
curve) and y = 5.5 x 1073, 1.1 x 1073, and 5.5 x 10~ (left to
right), corresponding to the curves in figure 10. The stress overshoot
in figure 10 is related to the negative undershoot in G(¢) at long
times. The plateau value which would develop closer to the glass
transition is indicated by the broken line. The inset shows the moduli
as a function of strain, where the vertical bars indicate the strains
considered in figure 12.

have been adjusted in order to match the stress attained in
steady state, fixing a relation of Enq = 8.8kgT between
the kinetic energies of the different systems for the largest
shear rate considered in the simulation. This fitted value of
T is surprisingly close to the actual value in the simulation,
indicating that the theory captures the stress magnitude well.
As figure 10 shows, this also provides a reasonable description
of the initial small-strain stress, reflecting the elastic constant
of the system. More importantly, the theory qualitatively
reproduces the stress overshoot found in the simulation. That
the peak occurs at strains of roughly y & 0.1, in accord with
simulation, is a consequence of our choice for the parameter y.
in the isotropic approximation to the advected wavevector. The
magnitude of the overshoot is significantly underestimated,
which might be due to the MCT approximation per se, but
may also be a result of the additional isotropic approximation
underlying our calculations. In the decay of o (¢) after its
maximum, the simulation data show a rather slow decay for
log,o v 2 0.75, which is also not captured in MCT.

The theory quite naturally relates this stress overshoot to
a peculiar feature of the dynamic shear modulus G(¢). In
figure 11, this modulus is shown both in the quiescent case
and for the shear rates used in figure 10. The equilibrium
function shows the two-step relaxation pattern familiar from
other correlation functions close to the glass transition. The
nonlinear shear thinning is clearly seen as a speeding up of
the final relaxation time in G(t) from the equilibrium case

(t ~ 10°) to that of steady shear, for which the characteristic
timescale is ¥ ~'. A plateau at times around ¢t &~ 1 is still

seen as a remnant of the cage effect. Note that only much
closer to the glass transition would a well-established constant
plateau develop, defining the solid shear modulus G,. For
the parameters chosen here, the modulus G () still shows a
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Figure 12. The product S, S, ,, which enters the stress vertex and
which leads to negative values of the modulus G (¢) at long times.
The uppermost panel and inset show S; S; ;) and Sy, respectively, for
a packing fraction ¢ = 0.4. Curves are for strain values

yt =0,0.1,0.2,0.3,0.4 and 0.5 (where the arrow indicates the
direction of increase). The lower panel shows the same quantities for
a packing fraction of ¢ = 0.5148, corresponding to the packing
fraction used in our comparison with simulation. The five values of
the strain considered are marked in figure 11.

finite slope in the plateau regime. Considering that o (¢) is the
time integral over G (¢) leads to the conclusion that the ‘elastic’
small-strain regime visible in figures 4 and 10 is not truly linear
in y. Indeed, the simulation data could be fitted with a power
law o o« y* with some effective exponent x < 1 in this time
window.

The transient shear modulus in addition shows a
characteristic negative dip for strains around y¢ ~ 0.1, which
for the highest shear rate corresponds to t Dy/d> =~ 20. From
the integral for the stress, equation (11), it is apparent that
an overshoot in o (¢) is the result of such a negative portion
in G(¢t) for long times. Recall that G(f) is a stress—stress
autocorrelation function, so that this negative dip may be
interpreted as a ‘backscattering’ of stresses. It arises from
the final stage of the relaxation, commonly referred to as the
o process, which is attributed to the breaking up of nearest-
neighbor cages. As a result MCT does not correlate the stress
overshoot to peculiar inhomogeneities, such as localized shear
events.

Within our MCT-based approach negative values of the
modulus occur as a result of the factor S S,/{([) appearing in
equation (12). The derivative S, oscillates about zero as a
function of k and attains maximal positive and negative values
in the vicinity of the first peak in Sj. As the strain is increased
the resulting de-phasing of the two factors S; and S, leads
to negative regions in the product S,/(S,/{(t). This behavior
is shown in more detail in figure 12 for two values of the
packing fraction ¢, where the structure factors are taken from
the analytic Percus—Yevick theory. Comparing the curves for
the two densities it is apparent that the first peak in S; is
considerably narrower and steeper for ¢ = 0.5148 than for
¢ = 0.4, leading to larger values of S in this region. In each
case the product S S}, becomes increasingly negative as the
strain is increased from yt = 0.1 to yr = 0.2. At longer
times, the decay of the correlators in equation (12) suppresses
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the negative vertex. The inset to figure 11 shows the modulus
G(t) as a function of strain. For strains in the range 0.1 to
0.25 the modulus attains its most negative values. Comparison
of the two panels in figure 12 shows that for ¢ = 0.5148 the
negative region in S, S,/c(t) is much more developed at yt = 0.2,
relative to ¢ = 0.4. This reflects the differences in the first
peak of the structure factor at the two densities and suggests
that systems with a steeper and narrower first peak in S will
possess a more pronounced overshoot within the present MCT-
based approach. Structure factors with a steeper and narrower
first peak are known to occur in two-dimensional systems [50].

We have now established two features of the transient
dynamics immediately following the instantaneous switch-on
of shear, both of which arise at strains of about 10% of the
particle diameter. The first of these, o (¢) (equivalently G(¢)),
concerns the collective dynamics, while the other, (r2(t, ty)),
concerns the single-particle dynamics of a tracer particle. It
is intriguing to see in which way these conceptually different
pieces of information might be related and to connect the
macroscopic rheological information contained in o (#) with
the microscopic particle motion. We consider in more detail
the transient MSD, 8r%(t) = (r’(¢, ty, 0)). An idea that
has proven particularly successful in the quiescent system is
that of a generalized Stokes—Einstein (GSE) relation, proposed
by Mason and Weitz as a correspondence between macro-
and micro-rheology [51]. Within this approach the diffusion
coefficient D is related to the viscosity n by

kT ks T
3rdan  3nda [y dsG(s)’

5)

In the context of quiescent MCT, this relation exemplifies
the coupling of the o«-relaxation times [52], and even
quantitatively works surprisingly well for the quiescent hard-
sphere system [49].  Quantitatively accurate results can
be obtained if one allows for a small correction to the
geometrical prefactor 3wd appearing in the original Stokes—
Einstein relation, o # 1.

In addition to the correlator (), MCT also yields
equations of motion for the tagged-particle correlation
functions, which yield an equation for the MSD in the ¢ — 0O
limit. Taking the form of the equation of motion for 8r2(r)
from the quiescent theory (ignoring any generalizations that
come about due to the anisotropic flow geometry), we can write

Dod [*
8r2(t)+k—OT / di'm® @ — )or*(t') = 6Dot,  (16)
B 0

where m® () is the tagged-particle memory kernel evaluated
as ¢ — 0. An analysis of the above equation at large times
immediately gives an expression for the diffusion coefficient
in terms of the memory kernel:

b Do N 1
T 14Dy [T dsm©(s) [T dsmO(s)

a7

Comparison of (17) with (15) clearly establishes a relationship
between the time integrals of m® () and G(¢). However, the
connection is deeper than simple equality of the integrated
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Figure 13. Comparison of the mean-square displacements from
simulation (vorticity direction, dots) and theory (solid lines), for
equilibrium (EQ) and for the highest shear rate considered in the
simulations (waiting time #, = 0). A superdiffusive regime is
apparent in the theoretical MSD for ¢, = 0, establishing the
connection to the stress overshoot in figure 10. Inset (a) shows the
effective exponent from the theory for 7, = 0 obtained from the
logarithmic derivative. The peak is at a value of ~1.2. Inset (b)
shows the MSD divided by 7. Dash—dotted lines correspond to the
MSD calculated from the simulated o (¢) at y = 3 x 1073 and the
GSE relation (see the text). The dashed line indicates the linear
diffusive behavior in steady state.

quantities.  Studies performed using the quiescent mode-
coupling theory have established that the MCT approximation
to G(¢) is in excellent agreement (up to a constant prefactor)
with the MCT approximation to m®(¢) for the hard-sphere
system [49]. In this work we make the assumption that this
correspondence holds also in the nonlinear regime for which
G(t) = G(t,y). Given this assumption we obtain a direct
correspondence between the MSD and the derivative of the
shear stress after start-up, (d/dt)o () o« G(¢):

m® (1) ~ (i> 3raG(t) = < )
ksT

We now consider application of the GSE approxima-
tion (18) to the calculation of the mean-squared displacement
using (16). In figure 13 we compare the t, = O curves ob-
tained from simulation and theory for the largest shear rate
considered in the simulation. Also shown is the equilibrium
curve that has been used to adjust A¢ in fitting the equilib-
rium simulation result. At short times differences arise due to
the different microscopic dynamics, as expected, but for the
long times relevant to our discussion, the fit is convincing. The
MCT-GSE theory displays a super-diffusive regime at interme-
diate times, qualitatively reproducing the phenomenology of
the simulation. In order to quantify this superdiffusivity, we
show in inset (a) the logarithmic derivative of the MSD, yield-
ing an effective exponent for 872(¢). While in the simulation
this quantity grows up to 2 (reflecting ballistic motion) in the
intermediate regime, our MCT calculation produces effective
exponents up to roughly 1.2. This situation is much closer to
the results of our colloidal experiments.

d
ksT
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Note that from (17), a super-diffusive regime in the
MSD can only arise if m® (¢) takes on negative values. By
virtue of (18), the presence of a super-diffusive regime is
therefore intimately connected to the stress overshoot and
the corresponding over-relaxation feature found in G(¢). It
is therefore tempting to assume that the more pronounced
super-diffusive regime found in the simulations relative to
the theory is a consequence of the correspondingly stronger
stress overshoot (see figure 10). In order to investigate
this connection further we have directly calculated the
mean-squared displacement from the simulation curve for
o(t), using (18) to obtain the memory function m®(z).
In this calculation, the Newtonian-dynamics equivalent of
equation (16) was used with a prefactor o 0.833
(accounting for the numerical uncertainty that arises from
the necessary smoothening of the derivative of the simulated
o (t)). The resulting MSD is shown in figure 13 (dashed—
dotted lines). For times longer than tDy/d*> =~ 100 the
MSD obtained in this fashion closely follows the directly
simulated quantity. However, for shorter times the agreement
is less satisfactory and significant deviations are visible. The
logarithmic derivative shown in the inset of figure 13(a)
confirms this. As a result of these findings we conclude that
the approximation (18) remains qualitatively reliable in the
nonlinear regime but that it fails quantitatively in the super-
diffusive time window where the stress overshoot is strongly
pronounced.

Finally, we consider application of the GSE-MCT relation
to fitting the experimental data for the MSD, the results of
which can be seen in figure 14. We follow the same procedure
as when fitting the simulation data and consider first the
equilibrium MSD. By adjusting A¢ we fix the ratio of final to
microscopic relaxation time and find a value A¢p = —1.1 x
1072 reproduces the experimental results to a satisfactory
level, using also a value « 0.95 little different from
unity. We next increase the shear rate until the long-time
diffusion matches that of the simulation. This is achieved
for Pe = 16 (corresponding to y = 5 x 1072Dy/d*). We
find a super-diffusive regime in qualitative agreement with the
experiment at Pe = 7, but which is somewhat underestimated
in magnitude. This lends support to our argument that the
approximation (18) is less reliable in the super-diffusive regime
than in equilibrium. In the inset we show the MSD divided by
t which confirms the relatively weaker superdiffusion.

4. Conclusions

We have studied the transient dynamics of a glassforming
system that is subjected to the sudden commencement of
steady shear flow. Results from computer simulation, confocal
microscopy experiments and mode-coupling theory give a
consistent picture that reveals peculiar dynamical features
around the time where the system reaches 10% strain for
the first time. In particular, the mean-squared displacements
in both the vorticity and the gradient direction show super-
diffusive behavior at intermediate times, interpolating between
the equilibrium curve that is followed for y < 0.1 and the
faster steady-state curve that is followed for y = 1. The
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Figure 14. Theoretical fits to the experimental mean-square
displacement (dotted) for equilibrium and ¢, = O (solid lines) using
o = 0.95 (see the text). The inset shows the MSD divided by ¢ and
highlights the super-diffusive regime.

super-diffusive behavior is more pronounced in the (ballistic)
simulation, giving rise to effective exponents of 2, and less
pronounced in the colloidal experiment.

Again at strains of y ~ 0.1, a well-recognized feature
in the collective dynamics is found, visible in the building
up of the shear stress as a ‘stress overshoot’ (a maximum in
o (t) followed by a decrease towards a smaller steady-state
value at later times). While we cannot propose a simple
picture of microscopic motion behind this stress overshoot,
we are able within MCT to directly relate it to a ‘stress
overrelaxation’, visible in the corresponding stress—stress
autocorrelation function in the late @-relaxation regime. It can
thus be attributed to the peculiar way in which cages break
up, and MCT predicts its specific shape and magnitude to be
system-dependent. We have demonstrated that MCT in this
way qualitatively describes the stress overshoot seen in the
simulation, albeit quantitatively underestimated.

A generalized Stokes—Einstein relation can be used to
relate the above two features of the transient collective and
single-particle dynamics. We have used MCT in combination
with this close link between micro- and macro-rheology
in order to demonstrate that the theory-predicted stress
overrelaxation quite naturally leads to a super-diffusive regime
in the mean-squared displacement. Again, its magnitude is less
pronounced than in the simulation, but compares reasonably
well with experiment, so that the remaining differences can
be attributed to the microscopic difference in the systems, the
isotropic nature of our approximations and violations of the
generalized Stokes—Einstein relation.
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